(3x)^2+(4x)^2=25^2

Simple and best practice solution for (3x)^2+(4x)^2=25^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2+(4x)^2=25^2 equation:



(3x)^2+(4x)^2=25^2
We move all terms to the left:
(3x)^2+(4x)^2-(25^2)=0
We add all the numbers together, and all the variables
7x^2-625=0
a = 7; b = 0; c = -625;
Δ = b2-4ac
Δ = 02-4·7·(-625)
Δ = 17500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17500}=\sqrt{2500*7}=\sqrt{2500}*\sqrt{7}=50\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{7}}{2*7}=\frac{0-50\sqrt{7}}{14} =-\frac{50\sqrt{7}}{14} =-\frac{25\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{7}}{2*7}=\frac{0+50\sqrt{7}}{14} =\frac{50\sqrt{7}}{14} =\frac{25\sqrt{7}}{7} $

See similar equations:

| 8x=48. | | b-3.12=5.23 | | 5=x+21/3 | | 7x=-21x1/7 | | 3r−9=-r+5+6 | | x+17=44.2 | | 2(4+5v)=0 | | 7g-10=8g | | -10+2m=8-m | | -342=18r | | (3/4)/x=9/8 | | -5k=(-6k)-9 | | 11x-9=6x+5 | | (-7,-4)m=1/2 | | 7(11)=k | | u+64=100 | | 14x+5-2x=10x+11 | | -3-p=(-9)-2p | | 8+2q=10q | | x/8+2=-2 | | -7g=2-8g | | 2=13−3(3−3w) | | 7(d+3)=49 | | 6+3t=2t | | x-(x*0.3)=54 | | x2−4x−25=-4x | | 7h=(-8)+5h | | 3x-17+59+90=360 | | x-x*0.3=54 | | 7=2s-9 | | x^2+2x-36=2x | | 3s-19=14 |

Equations solver categories